Künstliche Intelligenz

Künstliche Intelligenz findet zunehmend Anwendung in Geschäftsmodellen und Geschäftsprozessen. Eine kurze Einführung sowie Anregungen für die Initiierung entsprechender Projekte durch Unternehmen haben wir für Sie zusammengefasst.

Einleitung

Die Definitionen rund um die Künstliche Intelligenz (KI) sind vielfältig. Vereinfacht zusammengefasst sind hiermit in der Regel (Informations-)Systeme gemeint, die teilweise oder ganz autonom agieren, lernfähig sind, über reine Automatisierungsaufgaben hinausgehen und die menschliche Intelligenz zumindest simulieren können. Bei detaillierter Betrachtung stellt die tatsächliche Nachbildung menschlichen Verhaltens noch auf absehbare Zeit eine Zukunftsvision dar. Die "schwache" Künstliche Intelligenz hingegen zielt auf die Bearbeitung eingrenzbarer Aufgaben ab und findet sich bereits in verschiedensten Anwendungsgebieten wieder.
Dieses noch recht allgemein dargestellte Konzept ist seit Beginn des Computer-Zeitalters bekannt, prominente Anwendungsbeispiele finden sich heutzutage etwa in Form von Systemen, die Spiele erlernt und gegen Menschen gewonnen haben, in Ansätzen in der medizinischen Diagnose, in der Interpretation von Bildern und Fotos oder bei modernen Übersetzungssystemen. Für viele Nutzer unbewusst werden KI-Konzepte täglich millionenfach im Rahmen des Lösens bestimmter Captchas genutzt, worüber zum Beispiel Systeme zur Bilderkennung trainiert werden. Auch bei der Spam-Abwehr kommen teilweise entsprechende Systeme zum Einsatz.
Als ein zentrales Kriterium bei der Bezeichnung eines Systems als "KI-Anwendung" kann die Frage dienen, ob die Daten und Entscheidungskriterien, auf deren Basis ein entsprechendes System agiert, von vornherein bekannt oder bereits hinterlegt waren oder ob das System sich diese weitgehend eigenständig aneignet, Interpretationen vornimmt und das eigene Verhalten entsprechend anpasst beziehungsweise optimiert.

Machine Learning und Deep Learning

Historisch betrachtet entstand aus den beschriebenen Anforderungen die Unterdisziplin des maschinellen Lernens (machine learning). Diese zielt darauf ab, dass ein System eigenständig "lernt" und sein Verhalten dadurch optimiert. Eine Hürde bestand bei diesem Ansatz über lange Zeit jedoch darin, dass Aufgaben wie die Interpretation von Bildern oder Texten nicht abschließend durch mathematische Regeln formuliert werden können. Hierdurch mündete ein Großteil früher Projekte in diesem Bereich zunächst in extrem hohem Programmieraufwand und schließlich im Projektabbruch.
Den Schlüssel zu den heute verfügbaren Anwendungen lieferte insbesondere das Konzept von Deep Learning, wobei die jüngsten Fortschritte insbesondere durch schnelle Grafikprozessoren, die mittlerweile sehr umfangreichen Datenmengen (Big Data) sowie die Verfügbarkeit extrem schneller In-Memory-Datenbanken möglich wurden. Das "Deep" Learning bezieht sich hierbei auf mehrere Ebenen, die der Verarbeitung von Informationen zugrunde liegen. In der ersten Ebene werden die Eingabedaten verarbeitet (zum Beispiel ein Bild eines Vogels). Unterhalb dieser Ebene finden sich "versteckte" Ebenen, die jeweils (eigenständig) Abstraktionen der Eingangsdaten generieren (beispielsweise zunächst die Suche nach abstrakten Mustern wie Linien - daraus die Ableitung einer Mustererkennung für Federn, Flügel, Schnäbel, Augen oder auch für Menschen gar nicht erkennbare Eigenschaften - hieraus wiederum die Bestimmung von Vogelarten und so weiter). Durch wahrscheinlichkeitsbasierte Kombination dieser abstrahierten Informationen wird eine Schlussfolgerung gezogen, indem einige Muster für ein bestimmtes Ergebnis sprechen, anderen wiederum dagegen (Beispiel: Bild eines Vogels auf einem LKW – Muster wie „Räder“ oder „fährt auf einer Straße“ würden deutlich gegen das Ergebnis „Vogel“ sprechen). Von großer Bedeutung ist das Training entsprechender Systeme, indem beispielsweise ein Mensch oder ein anderes System in einer sehr hohen Anzahl von Beispielen die Rückmeldung gibt, ob das Ergebnis richtig war. Stark vereinfacht ausgedrückt werden im Hintergrund solange die Verknüpfungen (Gewichte) zwischen den einzelnen Mustererkennungen optimiert, bis die Trefferwahrscheinlichkeit am höchsten beziehungsweise das gelieferte Ergebnis optimal ist. Dieses Konzept ist hinsichtlich der Architektur in (sehr) groben Zügen mit dem Aufbau des Gehirns vergleichbar, weshalb sich im Kontext von Deep Learning häufig auch das Schlagwort Neuronale Netze findet.
Anhand dieser Betrachtung wird deutlich, weshalb eine führende und frühzeitige Rolle bei der Erforschung und Anwendung von KI für die Zukunft von großer Bedeutung sein dürfte. Während ein großer Suchmaschinen-Betreiber beispielsweise Captcha-Anfragen nutzen kann, um seine Systeme zur Bilderkennung zu trainieren, kann ein Neueinsteiger in diesem Feld nicht auf eine auch nur annähernd vergleichbare Anzahl menschlicher Testnutzer zurückgreifen. Ähnliche Konzepte sind beispielsweise bei der Bereitstellung komplexer Antworten auf Fragen anhand online verfügbarer Informationen denkbar, indem Nutzer zu den erhaltenen Antworten Feedback geben und dadurch die zugrunde liegenden Systeme trainieren. Es wäre etwa denkbar, dass bestimmte Beratungstätigkeiten hierdurch verdrängt oder zumindest verändert werden.

Chancen und Risiken der Künstlichen Intelligenz

Die Ideen zur Anwendung künstlicher Intelligenz sind nahezu unbegrenzt. Während Bild- und Spracherkennung oder bestimmte Aspekte von Übersetzungs-Software als Stand der Technik bezeichnet werden können, finden sich weitergehende Überlegungen beispielsweise bei der vollständig automatischen Erzeugung von Konstruktions- und Planungsdaten oder sogar von ganzen Filmen alleine anhand von Beschreibungen eines Ingenieurs, Architekten oder Regisseurs. Auch in der Medizin finden sich Ansätze nicht nur bei der Diagnostik, sondern auch in der Therapie. In der Mobilität der Zukunft sind von autonomen Fahrzeugen bis hin zu Drohnen Anwendungsfälle vorstellbar. Auch die autonome Erstellung von Texten anhand von Informationsquellen wurde bereits demonstriert, was vom Marketing bis zur technischen Dokumentation Anknüpfungspunkte bieten könnte.
Kritik und Risiken finden sich insbesondere im Kontext ethischer und gesellschaftlicher Fragen sowie in Zusammenhang mit der Arbeit der Zukunft. So wird etwa vor autonomen Waffen gewarnt, häufig wird beispielsweise auch die Diskussion um die "Auswahl" des Opfers bei einem nicht mehr zu verhindernden Personenschaden durch autonome Fahrzeuge angeführt. Bezüglich der Arbeit der Zukunft weisen verschiedene Studien darauf hin, dass eine Reihe menschlicher Aufgaben durch KI-Systeme geleistet werden kann. Hierbei ist jedoch zu differenzieren zwischen dem tatsächlichen Wegfall von ganzen Arbeitsplätzen (was derzeit nur sehr vereinzelt und langfristig prognostiziert wird) und der bloßen Veränderung bestimmter Berufe (was angesichts der heutigen Berufsprofile mit sehr vielfältigen Tätigkeiten deutlich häufiger erwartet wird). Häufig zielen entsprechende Studien sogar darauf ab, Unternehmen zur intensivierten Nutzung von KI zu animieren, da entsprechende Innovationen erhebliches Wachstumspotenzial mit sich bringen. Zudem wird eine umfangreiche Qualifizierung von Mitarbeitern in den relevanten Feldern angeregt.
Eine Reihe weiterer aktueller Diskussionspunkte finden sich beispielsweise in einem Bitkom-Positionspapier oder in einer Umfrage des Thüringer Ministerium für Wirtschaft, Wissenschaft und  Digitale Gesellschaft .

KI in Deutschland und Thüringen

Im November 2018 hatte die Bundesregierung ihre Strategie Künstliche Intelligenz beschlossen. Deutschland soll bei der Erforschung, Entwicklung und Anwendung auf einem weltweit führenden Niveau agieren. Demnach sollen die Forschungslandschaft gestärkt, zusätzliche Professuren eingerichtet sowie KI-Kompetenzzentren vernetzt werden. Darüber hinaus soll die Künstliche Intelligenz ein Schwerpunkt der Agentur für Sprunginnovationen werden. Ein weiterer Schwerpunkt liegt unter anderem auf dem Thema Normung und Standardisierung, hier soll zum Beispiel die Beteiligung der Wirtschaft gestärkt werden. Verschiedene Förderprogramme auf Bundesebene adressieren zudem explizit KI oder deren Teildisziplinen.
Die Thüringer Strategie für die Digitale Gesellschaft wurde in einem Beteiligungsprozess unter Einbeziehung von Akteuren aus Wirtschaft, Wissenschaft und Gesellschaft entwickelt. Sie behandelt Künstliche Intelligenz als eines von mehreren Querschnittsthemen. Der Freistaat Thüringen will Entwicklung und Einsatz von KI-Technologien unterstützen, um die Potenziale – insbesondere von Big Data und vernetzten Systemen – in Bereichen wie Gesundheit, Mobilität, Energie und Industrie 4.0 zu erschließen.
Die Online-Plattform "Lernende Systeme" zählt in Thüringen insgesamt 33 Projekte  KI-Projekte auf, darunter "Automatisierte Netzverlustprognosen für Höchstspannungsnetze" oder "Energie- und Energiedatenmanagement" auf.
Das Thüringer Kompetenzzentrum Wirtschaft 4.0 steht als Anlaufstelle für Unternehmen bei Fragen zu Digitalisierung und KI mit Workshops, Beratungsangeboten und Veranstaltungen zur Verfügung.

Anwendung in und durch Unternehmen

Der Einstieg in die Künstliche Intelligenz unterscheidet sich nicht grundsätzlich von anderen Innovationsvorhaben und bedarf neben einer systematischen Analyse von Zielsetzung und Rahmenbedingungen beispielsweise der Recherche technischer Möglichkeiten und rechtlicher Vorgaben, der Einbeziehung geeigneter Kooperationspartner oder bei Bedarf auch der Nutzung von Förderprogrammen. Die IHK Erfurt bietet in diesen und weiteren Bereichen umfangreiche kostenlose Unterstützung und Erstberatung. Für die gezielte Identifikation möglicher Anwendungsfelder und damit verbundener Geschäftsmodelle eignen sich insbesondere auch die in unserem Leitfaden zur Geschäftsmodellentwicklung vorgestellten Methoden.
Als ersten Impuls für die Suche nach Anwendungsfeldern finden Sie im Folgenden – ohne Anspruch auf Vollständigkeit – eine Auswahl möglicher Optionen. Eine Übersicht von Experten und Dienstleistern rund um derartige innovative IKT-Anwendungen finden Sie in der IHK-Firmendatenbank.
Analyse des Kundenverhaltens
Erkennung bislang unbekannter Muster im Verhalten abgewanderter Kunden. Ableitung eines Modells zur Früherkennung abwanderungswilliger Kunden.
Empfehlungssysteme
Analyse von Mustern in umfangreichen Bestellungen/Warenkörben von Kunden, die über offensichtliche Zubehörteile oder ähnliche Produkte hinausgehen. Ableitung von entsprechenden Empfehlungssystemen (online oder als Anwendung für Vertriebsmitarbeiter).
Erkennung von Fehlern in Prozessen
Suche nach Mustern im Vorfeld von Störungen zum Beispiel in komplexen Produktionsanlagen oder auch manuellen Abläufen. Ableitung von Methoden zur besseren Prognose von Fehlern.
Kognitive Services in Chatbots
Nutzung vorhandener Dienste beispielsweise für die Erkennung der Stimmungslage von Anrufern oder in Nachrichten. Ableitung von Maßnahmen zur Priorisierung oder gezielten Weiterleitung.
Sprachassistenten
Einbindung von Sprachassistenten in Produkte aller Art, Verknüpfung mit anderen Produkten und Services, Vereinfachung der Bedienung mittels natürlicher Spracheingaben.
Beratungs-Systeme
Trainieren eines Systems anhand des bislang aufgebauten Beratungswissens. Verlagerung eines Teils der Beratung beispielsweise in Online-Anwendungen.
Autonome Fahrzeuge und Maschinen
Entwicklung oder Mitwirkung bei der Entwicklung entsprechender Systeme, Komponenten oder zugehöriger Services für (Nutz-)Fahrzeuge, Drohnen oder (fahrende) Maschinen aller Art.

Onlinekurs zu KI-Grundlagen

Im von der IHK-Organisation nach Deutschland geholten Onlinekurs Elements of AI können Sie sich einen umfangreichen Überblick über Grundlagen der Künstlichen Intelligenz verschaffen.
In mehreren Lerneinheiten werden Anwendungsbeispiele, Aspekte des maschinellen Lernens, Grundlagen neuronaler Netze, gesellschaftliche Fragestellungen sowie viele weitere Themen behandelt. Anhand von Kontrollfragen sowie in einem Online Peer Review Verfahren mit anderen Nutzern der Lernanwendung können Sie den Lernerfolg überprüfen. Nach erfolgreichem Abschluss erhalten Sie eine Teilnahmebescheinigung.
© Bundesministerium für Wirtschaft und Energie