

Vorstellung 50Hertz

Unsere Aufgaben

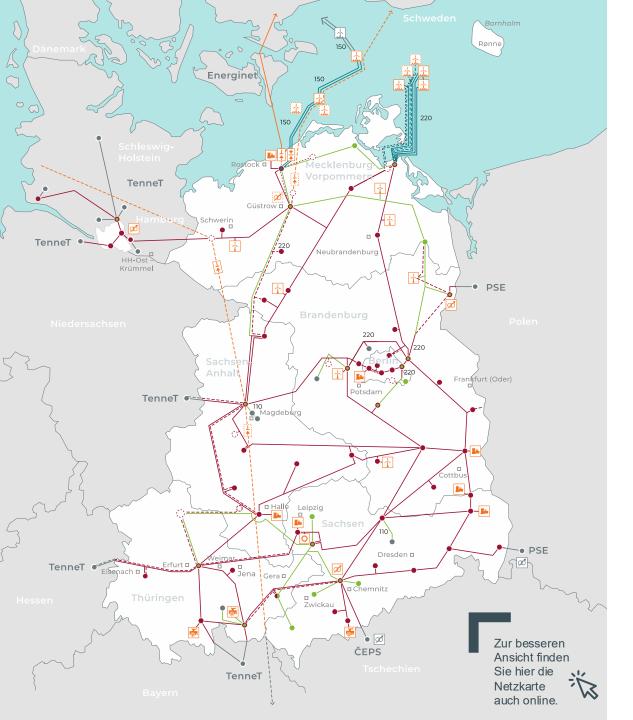
Übertragungsnetzbetreiber

Wir stellen die Stromnetzinfrastruktur für heute und morgen bereit.

Systemsteuerer

Wir halten das elektrische System im Gleichgewicht.

Marktentwickler


Wir sind Teil des integrierten europäischen Strommarkts.

Treuhänder

Wir integrieren Erneuerbare Energien transparent in den Markt.

50Hertz-Netzkarte

Schaltanlagen (zum Großteil mit Übergängen zu den Verteilnetzbetreibern)

- 380 kV
- 220 kV
- Transformation 380/220 kV
- Transformation 380/150 kV
- in Planung/Bau
- andere Unternehmen
- 110 Betriebsspannung in kV

^{*} Neubau weitgehend in Bestandstrasse

Leitung	380 kV	
Leitung in Genehmigung/im Bau*	380 kV	
Leitung	220 kV	
HGÜ/Gleichstromverbindung	400 kV	
HGÜ/Gleichstromverbindung in Genehmigung/im Bau	300/400/525 kV	
andere Unternehmen	380/220 kV	
HGÜ/Back-to-Back-Konverter	380/150 kV	-> 4-
HGÜ/Konverter	400 kV	→⊢ -
HGÜ/Konverter in Genehmigung/im Bau	300/525 kV	-
Netzanschluss Offshore	150/220 kV	
Netzanschluss Offshore in Genehmigung/im Bau	150/220 kV	

Netznutzer:

Unsere Kunden sind regionale Verteilnetzbetreiber und an das Übertragungsnetz angeschlossene Kraftwerke, Pumpspeicherwerke, Windparks und Großindustrie.

konventionelles Kraftwerk

Pumpspeicherkraftwerk

Phasenschiebertransformatoren

Windpark Onshore/Offshore

(Photovoltaik-) PV-Park

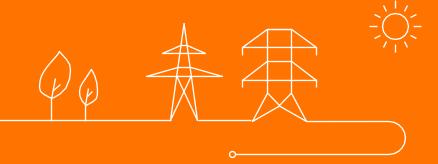
Windpark Onshore in Genehmigung/im Bau Windpark Offshore in Genehmigung/im Bau PV-Park in Genehmigung/im Bau

2024 im Überblick

·······• Umfeld

Finanzen

Umwelt


Soziales

Frauen in Führungspositionen

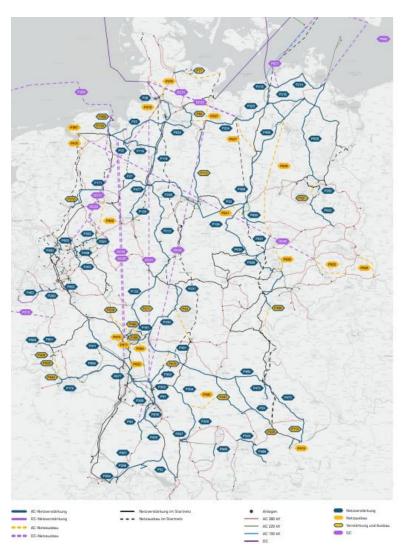
Bedarf: Warum brauchen wir neue Stromleitungen und Anlagen?

Warum brauchen wir neue Stromleitungen und Anlagen?

Stromerzeugung

Stromeverbrauch

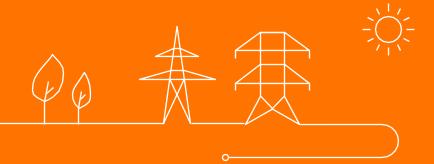
• Anstieg durch Elektrifizierung (z.B. E-Autos, Wärmepumpen) und neue Verbraucher (z.B. Rechenzentren)



Flexibilitäten

· Klein- und Großbatteriespeicher

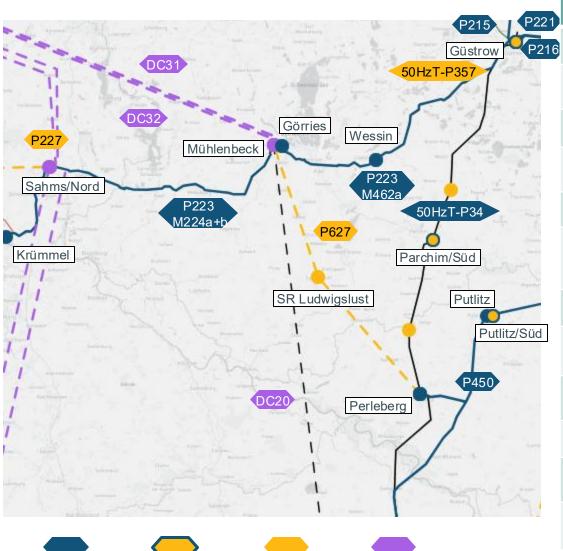
Wie wird der Bedarf für die Projekte ermittelt?



- Der Netzentwicklungsplan erscheint alle zwei Jahre
- Zeigt den Übertragungsbedarf zwischen Anfangs- und Endpunkten (zwei Netzknoten) – keine konkreten Trassenkorridore oder -verläufe
- Neuer Entwurf wird derzeit von den Netzbetreibern erstellt
- Mindestens alle vier Jahre wird der Bedarf neuer Vorhaben vom Gesetzgeber im Bundesbedarfsplangesetz bestätigt

Projektvorhaben 50Hertz in Mecklenburg-Vorpommern

Onshore



ÜBERBLICK

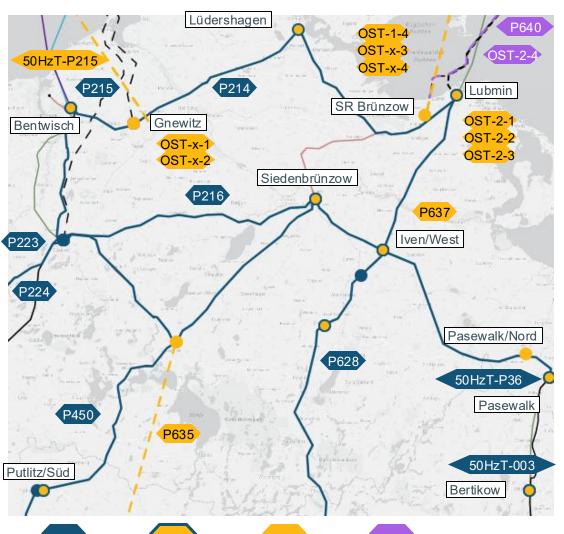
- Fünf neue Umspannwerke geplant
- Vier neue AC-Leitungsbauprojekte in Planung
- DC SüdOstLink im Bau befindlich
- DC NordOstLink in Planung

Projekte Mecklenburg-Vorpommern West

AC-Netzausbau

Ausbau und

Verstärkung


Netzverstärkung

DC

Projekt	Maßnahmen
DC20	HGÜ-Verbindung Mühlenbeck – Isar
DC31/DC32	HGÜ-Verbindungen von Schleswig-Holstein (Heide/West und Pöschendorf) nach Mühlenbeck
50HzT-P34	Netzverstärkung: Güstrow – Parchim Süd – Perleberg – (Wolmirstedt)
50HzT-P357	Netzausbau: Leistungsflusssteuernde Maßnahme Güstrow
P215	Verstärkung Güstrow - Bentwisch – Gemeinden Sanitz/Dettmannsdorf
P216	Netzverstärkung Güstrow - Siedenbrünzow - Iven/Krusenfelde/Krien/Spantekow/Werder/Bartow - Pasewalk/Nord - Pasewalk
P221	DC-Netzausbau: Hansa PowerBridge
P223 M462a	Netzverstärkung: Güstrow - Wessin - Görries - Mühlenbeck - Sahms/Nord – Krümmel
P223 M224a+b	Netzverstärkung: Güstrow – Mühlenbeck – Sahms/Nord (3.+4. System) inkl. Leistungsflusssteuernde Maßnahme in Mühlenbeck
P227	Netzausbau: Lübeck/West - Sahms
P450	Netzverstärkung Güstrow – Siedenbrünzow – Putlitz/Süd – Putlitz – Perleberg – Stendal/West
P627	Netzausbau: Mühlenbeck - Gemeinden Karstädt/Ludwigslust/Göhlen/Picher - Perleberg

Projekte in Mecklenburg-Vorpommern Ost

AC-Netzausbau

DC

AC-

Netzverstärkung

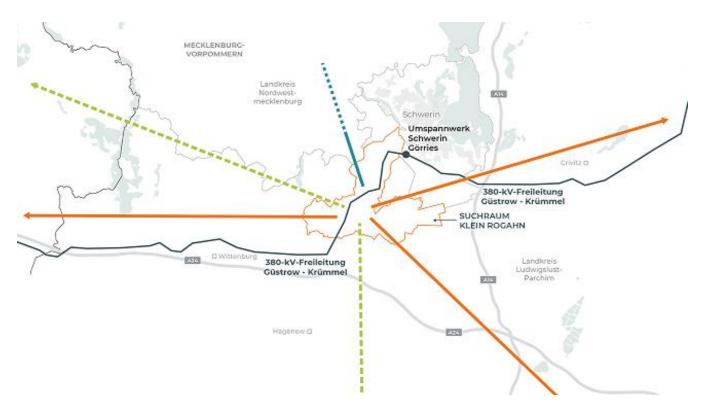
Ausbau und

Verstärkung

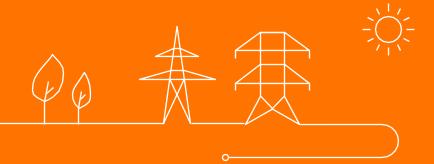
Projekt	Maßnahmen
50HzT-003	Netzverstärkung und -ausbau: Neubau Höchstspannungsleitung Neuenhagen – Bertikow/Vierraden – Krajnik (PL)
50HzT-P36	Netzverstärkung: Bertikow – Pasewalk
OST-2-1 bis 3	AC Offshore-Netzanbindungssysteme Lubmin
OST-x-1 bis 2	AC Offshore-Netzanbindungssysteme Gnewitz
OST-1-4/OST-x-3 bis 4	AC Offshore-Netzanbindungssysteme SR Brünzow
OST-2-4	DC Offshore-Netzanbindungssystem SR Brünzow
P214	Netzverstärkung: Gnewitz - Lüdershagen – SR Brünzow – Lubmin
P215	Netzverstärkung: Güstrow - Bentwisch - Gnewitz
P216	Netzverstärkung: Güstrow - Siedenbrünzow - Iven/West - Pasewalk/Nord - Pasewalk
P223	Netzverstärkung: Güstrow - Wessin - Görries - Mühlenbeck - Sahms/Nord - Krümmel
P450	Netzverstärkung: Güstrow - Siedenbrünzow - Putlitz/Süd - Putlitz - Perleberg - Stendal/West
P635	Netzausbau: Gemeinde Grabowhöfe - Einheitsgemeinde Stadt Jerichow - Stadt Barby/Stadt Zerbst/Anhalt - Marke
P637	Netzausbau: Netzausbau: Leistungsflusssteuerung Iven/West
P628	Netzverstärkung: Lubmin - Iven/West - Altentreptow/Nord - Altentreptow/Süd - Gransee - Malchow
P640	DC-Netzausbau: Offshore-Interkonnektor Bornholm Energy Island

SuedOstLink+

- Gleichstromverbindung SuedOstLink+ zwischen Suchraum Klein Rogahn und Landkreis Börde
- Verlegung von zwei Erdkabeln zum Transport von
 2 Gigawatt Leistung
- Juni 2025: Start in die Planfeststellung mit Antrag (nach § 19 Netzausbaubeschleunigungsgesetz) bei Bundesnetzagentur
- Inbetriebnahme bis 2032

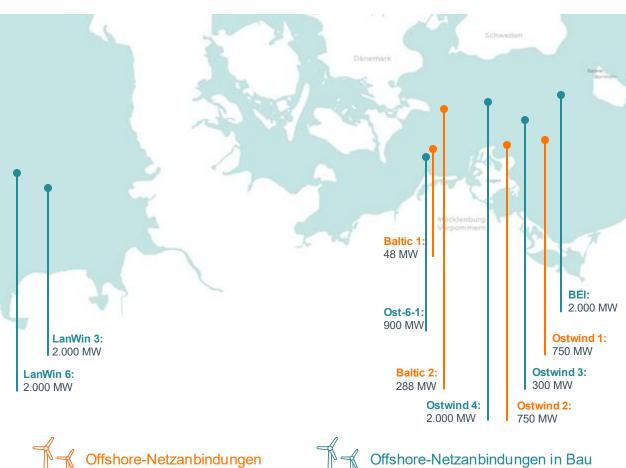

NordOstLink - Trassenverlauf

Energieknoten Umspannwerk Mühlenbeck



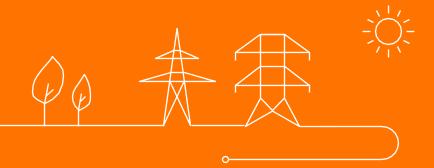
- Errichtung eines Umspannwerks in der Gemeinde Schossin im Amt Stralendorf
- Eingebunden werden sollen die Gleichstromverbindungen NordOstLink und SuedOstLink+ sowie die vorhandene 380-kV-Freileitung Güstrow - Krümmel
- Perspektivisch soll noch eine weitere 380-kV-Freileitung zwischen Güstrow und Krümmel eingebunden werden sowie eine 380-kV-Freileitung nach Perleberg
- Baustart f
 ür das Umspannwerk ist 2026

Projektvorhaben 50Hertz in Mecklenburg-Vorpommern


Offshore

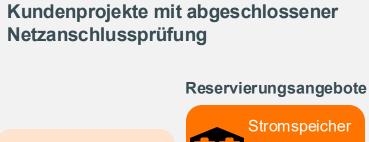

Offshore-Windenergie bei 50Hertz

oder Planung (über **9 GW**)



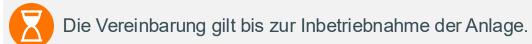
50Hertz ist verlässlicher Partner der Energiewende – vor Ort

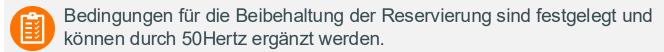
- 1) Rostock Offshore Quartier, ROQ (Warnemünde): Neuer Betriebsstandort als "Tor zur Ostsee"
- 2) Potenzial der Maritimen Wirtschaft

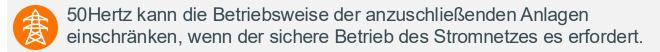


What about Speicher?

Antragsteller (Batterien und Lasten) mit bereits abgeschlossener Netzanschlussprüfung haben von 50Hertz ein Reservierungsangebot erhalten







Eckpunkte der Reservierungsvereinbarung zur Vorhaltung von Netzanschlusskapazität:

ABER: Antragsflut für Batterie-Netzanschlüsse kaum beherrschbar

Netzanschlussanträge für Batteriespeicher

4 ÜNB: 681 Anträge mit ca. 250 GW

50Hertz: 250 Anträge mit ca. 127 GW

Batteriespeicher sind am Übertragungsnetz wichtig und willkommen.

Aber: KraftNAV bedeutet

- Verdrängung aller anderen entnahmeseitigen Netzanschluss-Petenten (Industrie, Rechenzentren, Elektrolyseure) und Belegung der Netzverknüpfungspunkte auf sehr lange Zeit mit entsprechender Schieflage der Netzentwicklung
- Überlastung aller ÜNB-Ressourcen und Risiko von Missbrauchs-/Klageverfahren
- Keine Chance für später (jetzt) kommende Petenten (incl. BESS und Gas-Kraftwerke), auf absehbare Zeit einen Netzanschluss zu erhalten

Aktuelle politische Entwicklungen

Das Monitoring zum Stand der Energiewende hat 10 Schlüsselmaßnahmen identifiziert.

Ehrliche Bedarfsermittlung und Planungsrealismus.

Einheitliche und liquide Energiemärkte erhalten und ausbauen.

2 Erneuerbare Energien markt- und systemdienlich fördern.

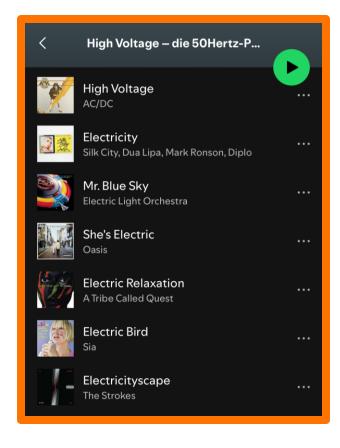
- Förderregime überprüfen, Subventionen systematisch senken.
- Netze, Erneuerbare Energien und dezentrale Flexibilität synchron ausbauen.
- 8 Forschung zukunftsgerichtet vorantreiben, Innovationen fördern.

Technologieoffenen Kapazitätsmarkt schnell implementieren.

Wasserstoff-Hochlauf pragmatisch fördern, überkomplexe Vorgaben abbauen.

Flexibilität und Digitalisierung des Stromsystems voranbringen.

CCS/CCU als Klimaschutztechnologie etablieren.


Ausbaupfade für Erneuerbare Energien und Netzinfrastruktur sollen sich an realistischen Strombedarfsszenarien (600 – 700 TWh) orientieren.

Vielen Dank

50hertz