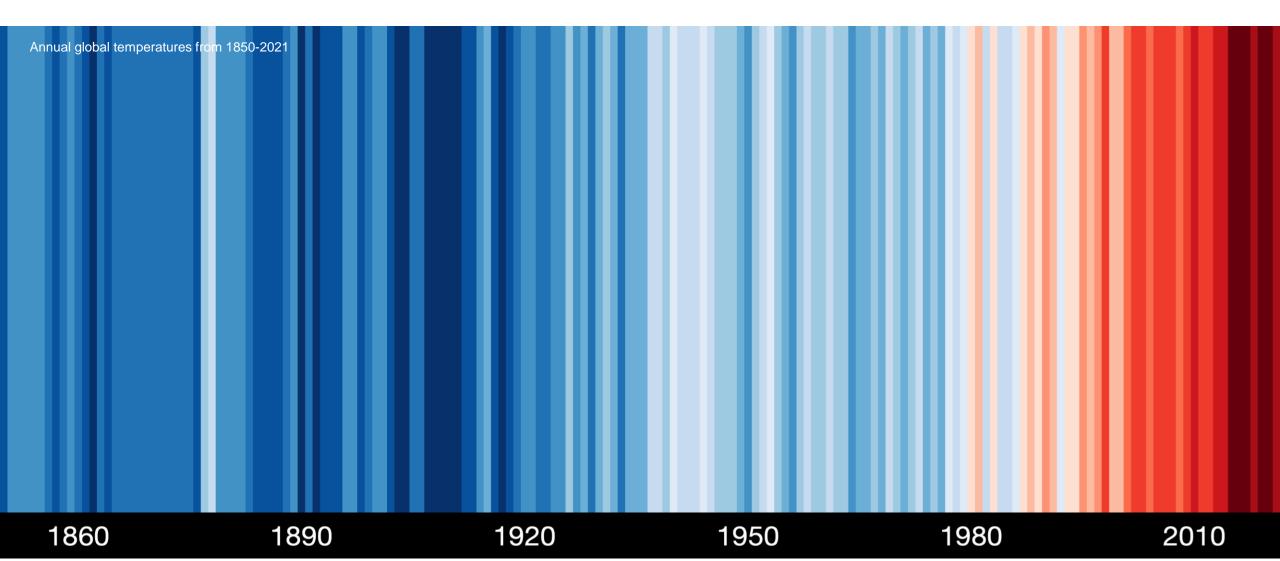


Prof. Dr.-Ing. Birte Frommer
Fachbereich Bau- und
Umweltingenieurwesen
Hochschule Darmstadt
birte.frommer@h-da.de

Prof. Dr.-Ing. Martin Zeumer Fachbereich Architektur und Bauingenieurwesen Hochschule RheinMain Martin.Zeumer@hs-rm.de



Was geht?

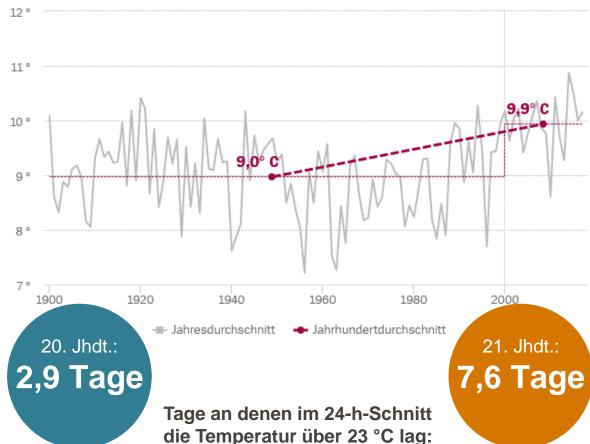
KLIMASCHUTZ

Ziel: Begrenzung des Klimawandel

KLIMAERWÄRMUNG IN EUROPÄISCHEN STÄDTEN

Jahresmitteltemperatur und Anzahl von Tagen über 23°C Tagesmitteltemperatur

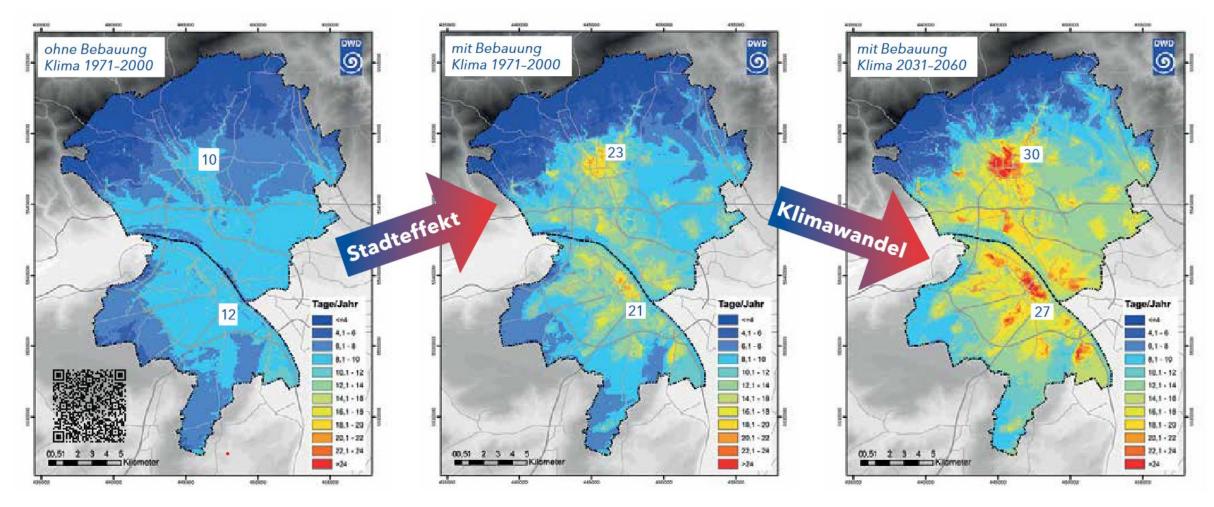
h_da hochschule darmstadt bau- und umweltingenieurwesen


Vergleich zwischen 1900-1999 und 2000-2017

Erwärmung von overgleichsweise langsam (ab +0,1 °C) bis vergleichsweise schnell (+2,5 °C und mehr)

Temperaturen in Wiesbaden von 1900 bis 2017

Jahres- und Jahrhundertdurchschnittswerte in Grad Celsius


Quelle: DGNB, http://www.spiegel.de/wissenschaft/natur/klimawandel-wetter-analyse-fuer-ueber-500-staedte-in-europa-a-1224569.html 10.07.2024

KLIMAERWÄRMUNG IN HESSEN

Durchschnittliche Anzahl heißer Tage pro Jahr in Abhängigkeit von Bebauung und Klimawandel

WAS IST NACHHALTIGKEIT?

2015 – Sustainable Development Goals

(UN Agenda 2030 für nach. Entwicklung)

NACHHALTIGE/R KONSUM UND

PRODUKTION

Je nach Bauprojekt werden bis zu 15 von 17 SDGs angesprochen!

Dabei kristallisieren sich fünf SDG als für die Bauwirtschaft besonders relevant heraus:

- Gesundheit und Wohlergehen (3)
- Bezahlbare und saubere Energie (7)
- Nachhaltige Städte und Gemeinden (11)
- Nachhaltige/r Konsum und Produktion (12)
- Maßnahmen zum Klimaschutz (13)

In Industrie- und Gewerbegebieten sind ferner:

- Menschenwürdige Arbeit und Wirtschaftswachstum (8)
- Industrie, Innovationen und Infrastruktur (9)

NACHHALTIGKEITSMODELL QUARTIERE DGNB Quartiere

Ökologische Qualität

- Ökobilanz (ENV1.1)
- Schad- und Risikostoffe (ENV1.2)
- Stadtklima -Mesoklima (ENV1.5)
- Wasserkreislaufsyste me (ENV2.2)
- Flächeninanspruchnah me (ENV2.3)
- Biodiversität (ENV2.4)

Ökonomische Qualität

- Lebenszykluskosten (ECO1.1)
- Resilienz und Wandlungsfähigkeit (ECO2.1)
- Flächeneffizienz (ECO2.3)
- Wertstabilität (ECO2.4)
- Umweltrisiken (ECO2.5)

Soziokulturelle und funktionale Qualität

- Mikroklima Thermischer Komfort im Freiraum (SOC1.1)
- Freiraum (SOC1.6)
- Arbeitsplatzkomfort (SOC1.8)
- Emissionen / Immissionen (SOC1.9)
- Barrierefreiheit (SOC2.1)
- Städtebau (SOC3.1)
- Soziale und funktionale Mischung (SOC3.2)
- Soziale und erwerbswirtschaftliche Infrastruktur (SOC3.3)

Technische Qualität

- Energieinfrastruktur (TEC2.1)
- Wertstoffmanagement (TEC2.2)
- Smart Infrastructure (TEC2.4)
- Mobilitätsinfrastruktur

 Motorisierter Verkehr
 (TEC3.1)
- Mobilitätsinfrastruktur
 Nichtmotorisierter
 Verkehr (TEC3.2)

Prozessqualität

- Integrale Planung (PRO1.2)
- Partizipation (PRO1.7)
- Projektmanagement (PRO1.8)
- Governance (PRO1.9)
- Sicherheitskonzepte (PRO1.10)
- Baustelle / Bauprozess (PRO2.1)
- Qualitätssicherung und Monitoring (PRO3.5)

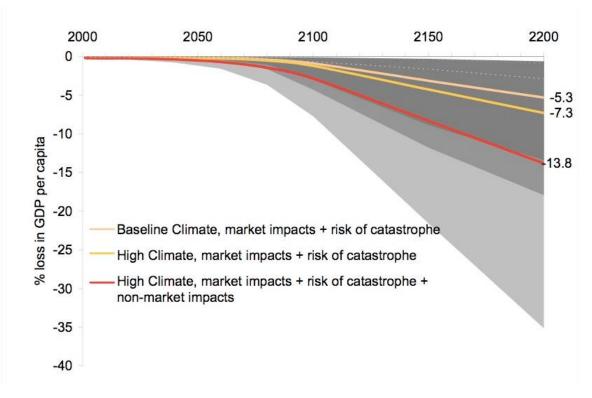
7

Quelle: https://www.dgnb-system.de/de/quartiere/kriterien/

WHO WANTS CHANGE?

WHO WANTS TO CHANGE?

2006 - STERN BERICHT


Wirtschaftlichkeit von Nachhaltigkeit

Betrachtet wurden Fünf Dimensionen

1. Nahrung / 2. Wasser / 3. Ökosysteme / 4. Extremwetter / 5. Risiko

Quelle: https://journals.openedition.org/sapiens/240

EU-KLIMASCHUTZPLAN

Ziele und Umsetzungsinstrumente

ZIEL 1:

Neuausrichtung der Kapitalflüsse hin zu einer nachhaltigeren Wirtschaft 1. Einführung eines EU-Klassifikationssystem für nachhaltige Tätigkeiten

2. Normen und Kennzeichen für umweltfreundliche Finanzprodukte

- 3. Förderung von Investitionen in nachhaltige Projekte
- 4. Berücksichtigung der Nachhaltigkeit in der Finanzberatung
- 5. Entwicklung von Nachhaltigkeitsbenchmarks

Taxonomie-VO

Benchmark-VO

ZIEL 2:

Einbettung der Nachhaltigkeit in das Risikomanagement Bessere Berücksichtigung der Nachhaltigkeit in Ratings und Marktanalysen

7. Klärung der Pflichten institutioneller Anleger und Vermögensverwalter

 Berücksichtigung der Nachhaltigkeit in den Aufsichtsvorschriften Offenlegungs-VO

ZIEL 3:

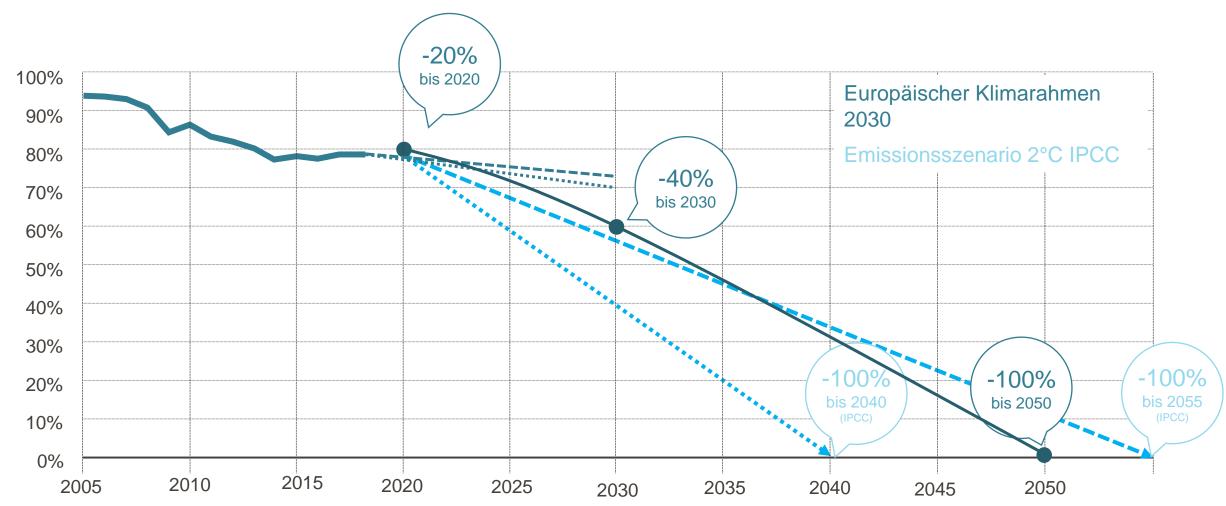
Förderung von Transparenz und Langfristigkeit 9. Stärkung der Vorschriften zur Offenlegung von Nachhaltigkeitsinformationen und zur Rechnungslegung

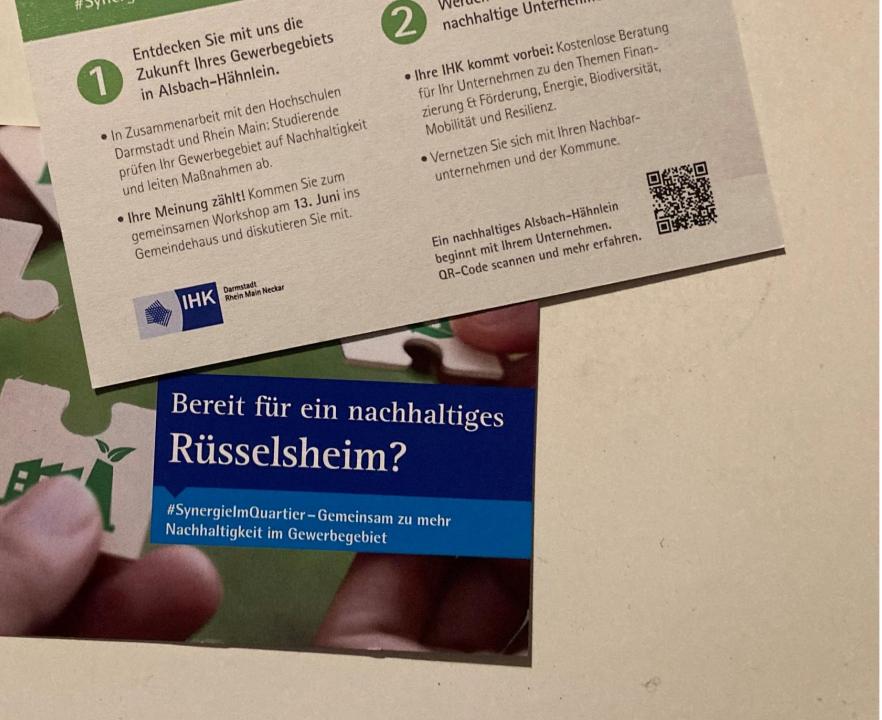
10. Förderung einer nachhaltigen Unternehmensführung und Abbau von kurzfristigem Denken auf den Kapitalmärkten

CSRD

Quelle: https://www.affinis.de/fachartikel/digitale-transformation/automatisierte-nachhaltigkeitsberichterstattung/

WIE HOCH SIND DIE UMWELTFOLGEKOSTEN FÜR DEN AUSSTOß EINER TONNE CO₂?




Quelle Daten: UBA: Methodenkonvention 3.0 zur Ermittlung von Umweltkosten/ Kostensätze Stand 02/ 2019 10.07.2024

EUROPÄISCHER KLIMARAHMEN 2030 REDUKTION DER TREIBHAUSGASEMISSIONEN

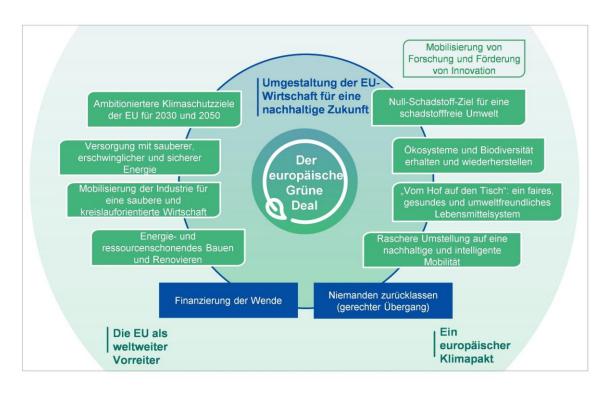
https://www.umweltbundesamt.de/daten/klima/europaeische-energie-klimaziele 10.07.2024

Und wir?

KLIMASCHUTZ

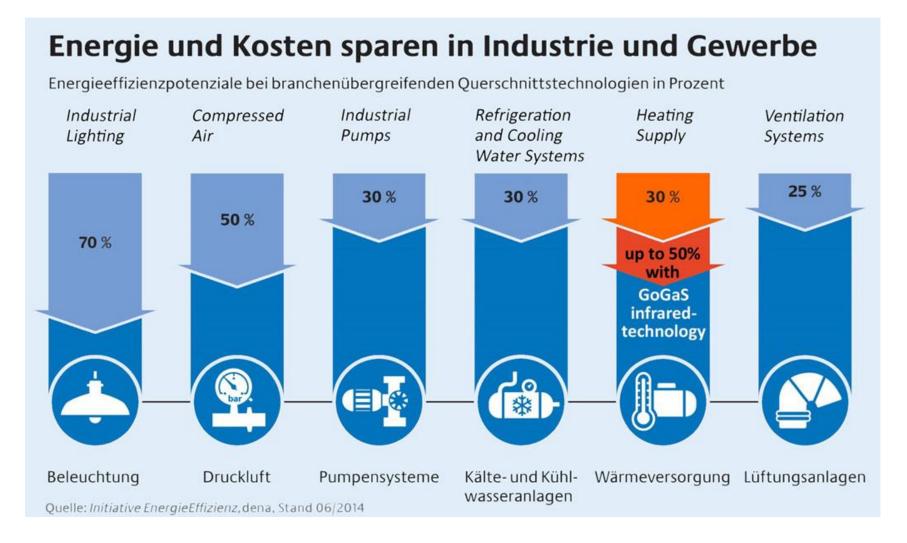
Kosten der Energiewende

Neue Zürcher Zeitung


So teuer könnte die Energiewende Deutschland zu stehen kommen

Die deutsche Energiewende erfordert laut einer Studie bis 2035 Investitionen in Höhe von gigantischen 1240 Milliarden Euro. Sie generiert aber auch Wachstum – und sie gewinnt an Fahrt.

Quelle: https://www.nzz.ch/wirtschaft/energiewende-soll-deutschland-rund-1200-milliarden-euro-kosten-ld.1828619


Der Green Deal will dazu in den nächsten zehn Jahren nachhaltige Investitionen von min. 1 Billion Euro (1000 Milliarden) mobilisieren.

Quelle: https://eur-lex.europa.eu/legal-content/DE/TXT/HTML/?uri=CELEX:52019DC0640

KLIMASCHUTZ

Einsparpotenziale in der Industrie

WIE HOCH SIND DIE UMWELTFOLGEKOSTEN FÜR DEN AUSSTOß EINER TONNE CO₂?

Quelle Daten: UBA: Methodenkonvention 3.0 zur Ermittlung von Umweltkosten/ Kostensätze Stand 02/ 2019 10.07.2024

WIE HOCH SIND DIE UMWELTFOLGEKOSTEN FÜR DEN AUSSTOß EINER TONNE CO₂?

Quelle Daten: UBA: Methodenkonvention 3.0 zur Ermittlung von Umweltkosten/ Kostensätze Stand 02/ 2019 10.07.2024

KLIMASCHUTZ

EU Zielsetzung im Gebäudebestand

Energieeffizienzklassen in Energieausweisen für Wohngebäude ab Mai 2014

Energie- effizienzklasse	Endenergiebedarf oder -verbrauch*	Ungefähre jährliche Energiekosten pro Quadratmeter Wohnfläche**
A+	unter 30 kWh/(m²a)	etwa 3 Euro
Α	30 bis unter 50 kWh/(m²a)	8 Euro
В	50 bis unter 75 kWh/(m²a)	13 Euro
С	75 bis unter 100 kWh/(m²a)	18 Euro
D	100 bis unter 130 kWh/(m²a)	24 Euro
E	130 bis unter 160 kWh/(m²a)	30 Euro
F	160 bis unter 200 kWh/(m²a)	37 Euro
G	200 bis unter 250 kWh/(m²a)	47 Euro
Н	über 250 kWh/(m²a)	60 Euro und mehr

Anmerkungen: * Ist bei einem vor dem 1. Mai 2014 erstellten Energieausweis der Warmwasserverbrauch nicht enthalten, muss der auf dem Ausweis genannte Energieverbrauchskennwert um eine Pauschale von 20,0 kWh/m²a erhöht werden. ** die berechneten Energiekosten sind Durchschnittswerte, inklusive Mehrwertsteuer, die je nach Lage der Wohnung und individuellem Verbrauch stark abweichen können.

Der Unterschied zwischen der Wohnfläche und der Nutzfläche, auf die sich der Energieausweis bezieht, ist rechnerisch berücksichtigt worden. Angenommener Energiepreis: 13 ct je Kilowattstunde Quelle: Verbraucherzentrale NRW

EU Green Deal Fit for 55 Bis 2030 müssen Nichtwohngebäude mit einer Energieeffizienzklasse E oder schlechter saniert sein. Wohngebäude müssen dieses Ziel bis 2033 erreichen.

NACHHALTIGKEITSSTRATEGIEN

Troika der Nachhaltigkeitsstrategien

Effizienz

besser

»Verbesserung des Verhältnisses eingesetzten Aufwandes zur Nutzengenerierung.«

Konsistenz

Anders/kreislauf-gerecht

»Einsatz naturverträglicher Technologien/Verfahren, welche die Stoffe und Leistungen der Ökosysteme nutzen.«

Suffizienz

weniger

»Geringerer Verbrauch von Ressourcen durch eine geringere Nachfrage nach Gütern.«

Quelle: TU München, Lehrstuhl für energieeffizientes und nachhaltiges Planen und Bauen, überarbeitet

We have to CHANGE?

Change is our Chance

NACHHALTIGKEITSMODELL QUARTIERE

Unsere World Café Themen

Ökologische Qualität

- Ökobilanz (ENV1.1)
- Schad- und Risikostoffe (ENV1.2)
- Stadtklima -Mesoklima (ENV1.5)
- Wasserkreislaufsyste me (ENV2.2)
- Flächeninanspruchnah me (ENV2.3)
- Biodiversität (ENV2.4)

Ökonomische Qualität

- Lebenszykluskosten (ECO1.1)
- Resilienz und Wandlungsfähigkeit (ECO2.1)
- Flächeneffizienz (ECO2.3)
- Wertstabilität (ECO2.4)
- Umweltrisiken (ECO2.5)

Soziokulturelle und funktionale Qualität

- Mikroklima Thermischer Komfort im Freiraum (SOC1.1)
- Freiraum (SOC1.6)
- Arbeitsplatzkomfort (SOC1.8)
- Emissionen / Immissionen (SOC1.9)
- Barrierefreiheit (SOC2.1)
- Städtebau (SOC3.1)
- Soziale und funktionale Mischung (SOC3.2)
- Soziale und erwerbswirtschaftliche Infrastruktur (SOC3.3)

Technische Qualität

- Energieinfrastruktur (TEC2.1)
- Wertstoffmanagement (TEC2.2)
- Smart Infrastructure (TEC2.4)
- Mobilitätsinfrastruktur

 Motorisierter Verkehr
 (TEC3.1)
- Mobilitätsinfrastruktur
 Nichtmotorisierter
 Verkehr (TEC3.2)

Prozessqualität

- Integrale Planung (PRO1.2)
- Partizipation (PRO1.7)
- Projektmanagement (PRO1.8)
- Governance (PRO1.9)
- Sicherheitskonzepte (PRO1.10)
- Baustelle / Bauprozess (PRO2.1)
- Qualitätssicherung und Monitoring (PRO3.5)

23

Quelle: https://www.dgnb-system.de/de/quartiere/kriterien/

NACHHALTIGKEITSMODELL QUARTIERE

Unsere World Café Themen

Ökologische Qualität

Ökonomische Qualität

Soziokulturelle und funktionale Qualität

Technische Qualität

Prozessqualität

Energie & Ressourcen

- · Stadtklima -Mesoklima (ENV1.5)
- Wasserkreislaufsyste me (ENV2.2)
- Flächeninanspruchnah

- Wandlungsfähigkeit (ECO2.1)
- Flächeneffizienz (ECO2.3)
- Wertstabilität

Grün und Wasser

- Erairoum (SOC1 6)
- - Immissionen (SOC1.9)
 - reih
 - rammanale M (SOC3.2)
- Soziale und erwerbswirtschaftliche Infrastruktur (SOC3.3)

- Integrale Planung (PRO1.2)
 - Partizipation (PRO1.7)

Soziales

(TEC2 2)

Motorisierter Verkehr

(PRO1.10)

Mobilität

Quelle: https://www.dgnb-system.de/de/guartiere/kriterien/

AUFGABE DER STUDIERENDEN DER HOCHSCHULE DARMSTADT

Entwickeln sie ein nachhaltiges Quartierskonzept für ihren Standort

Schwerpunkte sollen dabei auf die Themen Grüne Infrastruktur und Biodiversität, Wassermanagement, Verkehr und Mobilität, sowie Soziales gelegt werden.

Arbeitsschritte

- Ist-Aufnahme, Ist-Bewertung, Mängelanalyse im jeweiligen Quartier:
 - Rüsselsheim Hasengrund
 - Alsbach-Hähnlein Sandwiese
- Entwurf von zielgruppengerechten Maßnahmenvorschlägen in den Themenfeldern (Adressaten: Kommune, einzelne Unternehmen, Unternehmenskooperationen)
- Durchführung von Quartierworkshops zur Überprüfung und Ergänzung der Maßnahmenvorschläge
- Vertiefte Ausarbeitung der Konzepte und Maßnahmenvorschläge in Text, Karte und Bild

Öffentliche Abschlusspräsentation

10.07.2024 25

AUFGABE DER STUDIERENDEN DER HOCHSCHULE RHEINMAIN

Entwickeln sie ein nachhaltiges Quartierskonzept für ihren Standort

Schwerpunkte sollen dabei auf den lokalen Umgang mit Energie & Ressourcen sowie auf die Beleuchtung der notwendigen lokalen Prozesse gelegt werden.

Arbeitsschritte

- Ubergeordnete nachhaltigkeitsbezogene Analyse der Standorte mittels eines QuickCheck Nachhaltigkeit
- Untersuchung bestehender Energiekonzeptansätze auf Umsetzbarkeit sowie
- Überprüfung energetischer und nachhaltigkeitsbezogener Ansätze in den quartiersbezogenen Workshops
- inhaltliche Weiterentwicklung der Energiekonzepte sowie Zuordnung möglicher weiterer Maßnahmen zu Steigerung der Nachhaltigkeit
- Prozessbezogener Vorgehensvorschlag zur Umsetzung

10.07.2024 26

SYNQ

Innerhalb der Bearbeitung (sowie zwei weiterer, vorhergehender Semester) hat die Hochschule RheinMain ein Tool für die Nachhaltige Quartiersentwicklung namens **SynQ** erarbeitet.

Es bewertet etwa **450 pot. Maßnahmen zur Steigerung der Nachhaltigkeit** in Gewerbegebieten.

Aktuell wird mit Förderung der Hochschule RheinMain sowie der IHK ein Beta-Tool entwickelt, dass am Ende auch über die IHK zur Verfügung gestellt werden wird.

SynQ

- erfasst die Interessen der zentralen Stakeholder der Quartiere (Externe, Unternehmer, Gemeinde, Versorger, Anrainer und Mitarbeiter) an pot. Maßnahmen.
- unterstützt Stakeholder ihren individuellen Beitrag zur nachhaltigen Entwicklung im Quartier zu leisten.
- gibt Hinweise auf Grobkosten von pot. Maßnahmen.
- ordnet Wirkungen pot. Maßnahmen den
 Wirkungskategorien der Nachhaltigkeit-Bewertung
 zu.
- ermittelt bei einer Vorbewertung des Quartiers mittels einer Bewertungsmatrix für Gewerbegebiete¹ eine Passgenauigkeit der pot. Maßnahme zu vorhandenen Optimierungspotenzialen.

¹ Bewertungsmatrix für Gewerbegebiete in Dortmund entwickelt vom Institut für Landes- und Stadtentwicklungsforschung gGmbH

Hochschule RheinMain | Postfach 3251 | 65022 Wiesbaden

Fachbereich Architektur und Bauingenieurwesen

Studiengänge Immobilienwirtschaft, Real Estate und Architektur Professur Gebäudetechnologie und digitale Planung Prof. Dr.-Ing. Martin Zeumer

T +49 611 9495-1446 M +49 179 748 9 746 F +49 611 9495-1422

martin.zeumer@hs-rm.de

Datum 10.07.2024

Präsentationen und Planunterlagen entstanden im Rahmen der Veranstaltung Nachhaltige Quartierkonzepte (SS 2024); Studiengang Immobilienmanagement, Hochschule RheinMain

Sehr geehrte Damen und Herren,

Nach Abschluss der Veranstaltung im Rahmen des PERFORM Programms freuen sich die Studierenden der Hochschule RheinMain und ich, dass wir mit unseren Beiträgen Impulse für die Entwicklung der zwei untersuchten Quartiere leisten konnten. Wir möchten an dieser Stelle auch darauf hinweisen, dass die Unterlagen als Studienleistung an der Hochschule RheinMain in einem nicht kommerziellen Rahmen entstanden sind.

Das Urheberrecht liegt bei den Verfassern sowie den benannten Quellen. Eine gewerbliche Nutzung ist nicht gestattet. Auch eine weitergehende Nutzung der Unterlagen, auch auszugsweise, wird seitens der Urheber ausdrücklich untersagt. Sie kann bei Bedarf aber ggf. auf Basis von individuellen Absprachen mit

- Martin Zeumer martin.zeumer@hs-rm.de sowie
- Susanne Roncka Susanne.Roncka@darmstadt.ihk.de

ermöglicht werden. Bei Interesse sprechen Sie uns gerne an. Dafür herzlichen Dank!

Mit freundlichen Grüßen

Im Auftrag
Prof. Dr.-Ing. Martin Zeumer
Fachbereich Architektur und Bauingenieurwesen
Hochschule RheinMain