Kombinierte und kaskadierte neuronale Netze in der diagnostischen Pathologie

Lübeck Summer Academy, Media Docks, 9. 10. 2023

Andreas Turzynski Gemeinschaftspraxis für Pathologie, Lübeck www.pathologen-luebeck.de

Offenlegung der Interessenskonflikte

1. Anstellungsverhältnis oder Führungsposition Mitinhaber Gemeinschaftspraxis für Pathologie, Lübeck Inhaber PathoPlan GbR, Lübeck

2. Beratungs- bzw. Gutachtertätigkeit

3. Besitz von Geschäftsanteilen, Aktien oder Fonds Besitz KI-Fonds-Anteile

4. Patent, Urheberrecht, Verkaufslizenz

5. Honorare

6. Finanzierung wissenschaftlicher Untersuchungen

Sachmittelbeihilfe von Sysmex Deutschland (Stellung eines Scanners für 6 Monate) Sachmittelbeihilfe von Roche Deutschland (Stellung eines Scanners für 2 Jahre) Referenzzentrum für Künstliche Intelligenz i.R. des EMPAIA-Projekts, Förderung durch Bundesministerium für

Wirtschaft

7. Andere finanzielle Beziehungen

8. Immaterielle Interessenkonflikte

Agenda

- Pathohistological Diagnostics
- Ensemble networks $\rightarrow \frac{\text{HEROHE}}{\text{ECDP2020}}$
- Cascaded networks \rightarrow Prostate cancer:

Tissue segmentation and interpretation

Breast cancer:

Measurement of nuclear features

www.pathologen-luebeck.de

Von Der Bischof mit der E-Gitarre at de.wikipedia - Selbst fotografiert, Gemeinfrei, https://commons.wikimedia.org/w/index.php?curid=16661579

https://de.freepik.com

- Messer
- Makroskopie

- Mikroskop
- Mikroskopie

Pathologie

- Mikrofon
- Diagnose

Pathologie

- Klinisch-diagnostisches Querschnittsfach
- Diagnostik an Gewebe
 - Mikroskopie
 - Konventionelle Histologie
 - Schnellschnittdiagnostik
 - Immunhistologie
 - Molekularpathologie
 - PCR,
 - In-situ-Hybridisierung
 - Sequenzierung
 - Al/computational pathology

1. Revolution

2. Revolution

3. Revolution

PATHO OGIE

KI-Methoden in der Computervision

- Bildbearbeitung/Klassisches Maschinenlernen
 - Segmentierungsmethoden, Entscheidungsbäume
- Deep learning / neuronale Netze
 - Klassifikation: was ist zu sehen?
 - Segmentierung:

wie ist die räumliche Ausdehnung?

- Objektdetektion/
- Instanzsegmentierung:

wo und wieviele?

Object Detection

Instance Segmentation

1., 2. https://colab.research.google.com/github/d2l-ai/d2l-en-colab/blob/master/chapter computer-vision/semantic-segmentation-and-dataset.ipvnb 3. https://pyimagesearch.com/wp-content/uploads/2018/11/instance_segmentation_example.jpg

Ensemble Networks: HEROHE-Challenge

MDPI

Article

HEROHE Challenge: Predicting HER2 Status in Breast Cancer from Hematoxylin–Eosin Whole-Slide Imaging

Eduardo Conde-Sousa ^{1,2}, João Vale ^{1,3}, Ming Feng ⁴, Kele Xu ⁵, Yin Wang ⁴, Vincenzo Della Mea ⁶, David La Barbera ⁶, Ehsan Montahaei ⁷, Mahdieh Baghshah ⁷, Andreas Turzynski ⁸, Jacob Gildenblat ⁹, Eldad Klaiman ¹⁰, Yiyu Hong ¹¹, Guilherme Aresta ^{12,13}, Teresa Araújo ^{12,13}, Paulo Aguiar ^{1,2}, Catarina Eloy ^{1,3,14} and Antonio Polónia ^{1,3,*}

Table 3. Final classification of the HEROHE Challenge according to F1 score.

Rank	Team	AUC	Precision	Recall	F ₁ Score
1	Macaroon	0.71	0.57	0.83	0.68
2	MITEL	0.74	0.58	0.78	0.67
3	Piaz	0.84	0.77	0.55	0.64
4	Dratur	0.75	0.57	0.70	0.63
5	IRISAI	0.67	0.58	0.67	0.62
6	Arontier_HYY	0.72	0.52	0.73	0.61
7	KDE	0.62	0.51	0.75	0.61
8	joangibert14	0.66	0.48	0.78	0.60
9	VISILAB	0.63	0.51	0.73	0.60
10	MIRL	0.50	0.40	1.00	0.57
11	aetherAI	0.66	0.49	0.67	0.57
12	NCIC	0.63	0.52	0.62	0.56
13	biocenas	0.57	0.46	0.53	0.50
14	HEROH	0.59	0.46	0.53	0.49
15	Reza Mohebbian	0.61	0.51	0.43	0.47
16	mindmork	0.63	0.53	0.38	0.45
17	Institute of Pathology Graz	0.63	0.50	0.38	0.43
18	katherandco	0.44	0.44	0.40	0.42
19	QUILL	0.63	0.50	0.33	0.40
20	HEROHE_Challenge	0.48	0.37	0.27	0.31
21	UC-CSSE	0.47	0.31	0.27	0.29

Figure 5. Overall architecture of the model developed by team Dratur.

HEROHE-Challenge Hinton-Plot: raw prediction of HER2 positivity in 30 cases

Prostate cancer - Criteria-based Diagnosis -Cascaded Networks

Benign

Criteria for malignancy:

Loss of basal cells Enlarged nuclei Prominent nucleoli Growth pattern Infiltrating growth Perineural invasion

Malignant

Diagnostic relevant tissue targets in prostate

Olaf Ronneberger, Philipp Fischer, Thomas Brox: U-Net: Convolutional Networks for Biomedical Image Segmentation Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer, LNCS, Vol.9351: 234--241, 2015

Generation of a multiclass dataset

- Binary segmentation models for
 - Luminal epithelium, basal cells, nuclei of different compartiments, nucleoli, lumina, corpora amylacea, fat vacuoles, nervs, sleletal muscle, lipofuscin, black ink, green ink, red ink, yellow ink
- Predict each class on a patchified H&E dataset (512x512px @ 20x, 0.5μm/px)
- Stack the binary prediction masks
- Generate a categorical multiclass mask (np.argmax)

Classes and Class Imbalance

Class/Item	Abbrev.	%	Class/item	Abbrev.	%
Background	bg	4.33	Red ink	ri	0.37
Stroma	st	56.11	Green ink	gi	0.12
Striated muscle	sm	0.59	Black ink	bi	0.91
Fat	ft	0.89	Lipofuscin	lf	0.17
Lumen	lu	8.06	Stromal nuclei	nu_st	3.96
Corpora amylacea	са	0.33	Nuclei in lumina	nu_lu	0.02
Basal cells	bc	1.78	Luminal/cancer cell nuclei	nu_ck	4.97
Luminal cells/ Cancer cells	ck	13.08	Lymphocytes	ly	1.20
Nervs	nv	0.27	Basal cell nuclei	nu_bc	2.46
Yellow ink	yi	0.32	Nucleoli	no	0.06

Training: 75 epochs (21 days), Unet with efficientnetB2 backbone, focal loss, lr = 0.003, callbacks

Testset results: IoU-score: 0.8609, F1-score: 0.8956

20 class tissue segmentation: 3000x3000 px (= 1.5x1.5 mm)

Red:basal cells + basal cell nucleiGreen:non basal epitheliumBlue to cyan:nuclei (epithelial, stromal, lymphocytic)Yellow:nucleoliWhite:luminaLight blue:stroma

Segmentation in prostate core needle biopsies

Confusion matrices

focal_loss

VS.

dice loss

Actuals

Does the computer (i.e. another segmentation model) "understand" the segmented images ?

- Manual annotion of 400 images 3000 x 3000 px on overlays of
 - HE,
 - IHC of basal cells (34ßE12, p63) and
 - epithelium prediction from a binary network
- 3 classes: benign, CIS/HGPIN, malignant (+ background)

	Grading of Breast Cancer					
	Parameter	1	2	3		
A	Tubule	>75%	10-75%	<10%		
	Nuclear pleomorphism	Absent*	Moderate	Marked		
в	count**	<9	9-17	>17		
Charles and the second	Final score	3 4	5 6 7	8 9		
c		Grade I	Grade II	Grade III		

Whole Slide Image

Nuclear Breast Cancer Analysis (TCGA Dataset)

Summary

- Neural networks and specialized libraries can be **paralleled**, **combined and cascaded**.
- This stategy is useful to organize and structure a task into subtasks.
- It forces the pathway into diagnostically established pathways.
- Image, intermediate results and final prediction can be placed sideby-side.
- This results in explainable AI (xAI) and moreover in self-explaining AI.
- Diagnostical criteria in Pathology will be refined by the results obtained by AI.