HySeas III:
Prospects for the use of hydrogen and fuel cells on RoPax ferries
9. Zukunftskonferenz der maritimen Wirtschaft MV
Juan Camilo Gomez
DLR Institute of Networked Energy Systems, Oldenburg, Germany

Funded by the European Union's Horizon 2020 research and innovation programme under grant agreement no: 769417
Agenda

1. About the German Aerospace Center (DLR)
2. Motivation
3. Alternative energy supply for ships
4. HySeas III:
 4.1. Full Size Testing in Norway
 4.2. Environmental and Economic Assessment and Multi-Criteria Decision Analysis
5. Conclusions
German Aerospace Center (DLR)

- Research institution, space agency, project management agency
- Aeronautics, space, energy, transport, digitisation and security
- More than 9,000 staff in 54 institutes and facilities in 30 locations; offices in Brussels, Paris, Tokyo and Washington
- Member of the Helmholtz Association

DLR Institute of Networked Energy Systems, Oldenburg
Department: Energy Systems Analysis

Multidimensional and prospective assessment
- Multidimensional approaches that integrate economic, ecological, technical and social aspects
- Prospective assessments of technologies as a basis for system modelling

Excellent science

Industry partner

Contributions to overcoming the societal challenges

Energy Scenarios and Technology Assessment

Funded by the European Union's Horizon 2020 research and innovation programme under grant agreement no: 769417
Motivation

• Total Shipping contribution to GWP: 2.89% of total anthropogenic yearly CO₂ emissions (2018)

• IMO MEPC 72: Long-term measures: „pursue the development and provision of zero-carbon or fossil-free fuels“

• ...but first, this has to be implemented in a small scale

• RoPax ferries have regular routes and some sizes are interesting for the implementation of new solutions

Motivation

*Only ships of over 5000GT are obliged to report in accordance with Article 19 of Regulation (EU) 2015/757

Motivation

• Although the long-term seems to be far away, ships are relatively long-lived (RoPax ferries more than 30 years).

• The future starts now if we want to reduce green house gases by 2050!

Alternative Energy Supply for Ships

- The energy supply for ships is mainly based on oil and natural gas.

- Possible alternative energy supply routes: Direct electrification, hydrogen (compressed and liquid), biofuels, synthetic liquid hydrocarbons, synthetic natural gas, methanol, ammonia, wind assisted propulsion.
Alternative Energy Supply for Ships

Blue: energy conversion and storage on the ship

Orange: Energy supply chain

- **Consensus:** although there are several alternatives, the development of both power conversion and energy storage on board and energy supply on shore are necessary

- **Hydrogen will be needed for several energy supply routes**

Source: own figure
Hydrogen Supply: Availability in Europe

- Merchant: sold as product
- Captive: internal use
- By-product: recovered
- Global H₂ demand: 70 MMT+40MMT mixed*

*MMT: Million metric tonnes

Source of H₂ in Europe in 2018 [metric tonnes/day]

Source: Fuel Cells & Hydrogen Observatory; Available at: https://www.fchobservatory.eu/sites/default/files/reports/Chapter_2_Hydrogen_Molecule_Market_070920.pdf
HySeas III Project

• Combine fuel cells with batteries to test with typical loads of a Roll-on/Roll-off passenger ferry (RoPax), which would operate in the 7 km route Kirkwall/Shapinsay (Scotland)

• Constructing and testing a powertrain on land with 600kW fuel cell power and 720 kWh Li-ion battery packs

• DLR contributes to the project with market and job-creation potential analyses as well as with environmental and economic assessments of the future implementation of this alternative propulsion system

Funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement no: 769417
HySeas III: Full Size Testing in Norway

Full-size tests in Norway

In practice:

https://www.youtube.com/watch?v=O8KTwnhIB4Y
HySeas III: Environmental and Economic Assessment

Hydrogen Fuel Cell and Battery Electric RoPax Ferry
- 600 kWh Fuel Cells
- 600 kg \(H_2 \) on-board storage
- 720 kWh Li-ion batteries
- \(H_2 \) produced with wind power
- Charging electricity from grid

Diesel Battery Electric RoPax Ferry
- 600 kW Diesel Engines
- 720 kWh Li-ion batteries
- Electric generator
- Charging electricity from grid

Diesel Electric RoPax Ferry
- 600 kW Diesel Engine
- Electric generator

Using hydrogen derived from wind power electricity, fuel cells and batteries allows life cycle CO₂ eq reductions of up to 80% compared to the base diesel electric case.
HySeas III: Results of Life Cycle Costing

Power train and replacements of batteries and fuel cells are considerably higher than the ones of the traditional alternatives employing only internal combustion engines.

Hydrogen production cost depends heavily on the electricity price.

Considering an electricity price for hydrogen production of 10 Euro cent/kWh, the levelized cost per km are almost 90% higher compared to the diesel electric alternative.

![Graph showing Life Cycle Cost per km for different alternatives](source: own plot)
Results of Multi-Criteria Decision Analysis

Closeness coefficient in TOPSIS measures how close one alternative is to the „ideal“ solution (the closer, the better)

The hydrogen fuel cell and battery alternative is closer to the ideal solution when the weight of the economical dimension is reduced to less than 0.2

The results depend heavily on the weights we assign to the indicators

Source: own plot
Conclusions

For defossilsation, the innovation must happen in several fronts:

• Energy collection and conversion from renewable energies (i.e. solar PV, wind power) or direct conversion on ships (wind-assissted propulsion)

• Energy supply to ships (electricity, compressed hydrogen, ammonia, synthetic fuels, among others)

• Energy storage on ships (i.e. compressed hydrogen, liquid hydrogen, LOHC, liquid ammonia, Synthetic LNG or electricity in batteries)

• Energy conversion on the ships (internal combustion engines for other fuels, fuel cells)

For a future use of hydrogen for shipping:

• A supply chain of hydrogen produced using renewable energies is necessary

• Most of today’s hydrogen production is captive, meaning that is produced and consumed in the same place

• Bunkering of hydrogen (both compressed and liquid) are still to be proven and needs upscaling
Conclusions

HySeas III develops a hydrogen and fuel cell propulsion system for a RoPax ferry. From our analysis, we have seen:

• Lower lifetime environmental impacts from the use of hydrogen, fuel cells and battery have been seen in comparison with diesel and diesel hybrid RoPax alternatives

• However, other impacts, mainly related with the sourcing and production of the materials necessary for the production of batteries and fuel cells increase when compared with the diesel and diesel hybrid options

• The levelized cost per km of crossing is highly dependent on the price of the electricity used for hydrogen production. At a reference cost of 10 EUR cents, the estimated costs (excluding personal costs) are estimated to be 90% higher than those of an diesel ship.

• Using the TOPSIS multi-criteria decision analysis method, the hydrogen fuel cell and battery alternative is only selected when the environmental impact are given an 80% weight, with the aim of minimising those impacts.
Outlook

• The string test and the ship design exercise done under HySeas III will reduce the uncertainty for the future development of hydrogen and fuel cell on ships.

• The data produced by the tests and the design will be integrated into the current analysis to come to more accurate results.

• Social analysis, such as the job-creation potential, are yet to be integrated into the analysis to have a holistic view.
Thank you for your time!

Juan Camilo Gómez Trillos
German Aerospace Center (DLR)
Institute of Networked Energy Systems
Research Scientist
Energy Scenarios and Technology Assessment
Phone: 49-441 99906-247
Mail: juan.gomeztrillos@dlr.de
Selected References

GOMEZ, Juan Camilo; VOGT, Thomas, BRAND, Urte., WILKEN, Dennis, REMLER, Martin. Market Potential Analysis of RoPax Ferry Market in Europe. Deliverable 6.1 Project HySeas III. 2019

Fuel Cells & Hydrogen Observatory; Available at: https://www.fchobservatory.eu/sites/default/files/reports/Chapter_2_Hydrogen_Molecule_Market_070920.pdf

https://www.iea.org/reports/hydrogen

https://h2tools.org/hyarc/hydrogen-production
Backup slides
Hydrogen Supply: Electrolysis Additions and Cost

H₂ Electrolysis Expected Cumulative Capacity in Europe [Mwₑ]

Prospects for Electrolysis CAPEX reduction: experience rates of electrolysis: 18±6%

Source of data: https://www.iea.org/reports/hydrogen
Hydrogen Supply: Liquid Hydrogen

It also depends on the physical state of hydrogen...

<table>
<thead>
<tr>
<th>Country</th>
<th>Output kg/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>209,167</td>
</tr>
<tr>
<td>Canada</td>
<td>51,461</td>
</tr>
<tr>
<td>Japan</td>
<td>35,607</td>
</tr>
<tr>
<td>France</td>
<td>10,500</td>
</tr>
<tr>
<td>Germany</td>
<td>10,100</td>
</tr>
<tr>
<td>Netherlands</td>
<td>5,400</td>
</tr>
<tr>
<td>Guiana</td>
<td>2,500</td>
</tr>
<tr>
<td>Australia</td>
<td>250</td>
</tr>
</tbody>
</table>

*Port of Hastings: https://hydrogenenergysupplychain.com/port-of-hastings/

Own plot/Data source: https://h2tools.org/hyarc/hydrogen-production
Alternative Energy Supply HySeas III

- Direct energy supply with electricity to load the batteries and using hydrogen as energy carrier
- Fuel cells are the main energy conversion element in the propulsion system
Results of Multi-Criteria Decision Analysis

TOPSIS steps

1. Normalization
2. Weighting
3. Ideal and anti-ideal solution
4. Calculate the distance for each alternative to the ideal action and anti-ideal action
5. Calculate the relative closeness coefficient of each alternative

Source: own plot

<table>
<thead>
<tr>
<th>Environmental Dimension</th>
<th>Economic Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1</td>
<td>0.031</td>
</tr>
<tr>
<td>I2</td>
<td>0.031</td>
</tr>
<tr>
<td>I3</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>I16</td>
<td></td>
</tr>
</tbody>
</table>

Levelized cost per km

0.5

0.5