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Research & Development of Data-Driven Algorithms
Example: Extraction of Kidney Anatomy

Al algorithm for assessment of renal cancer:
= |Input: CA-CT (computer tomography) images of renal region
= Qutput: geometry of important anatomy (kidneys, tumors, vessels)

Goal: automatic measurements, quantitative assessment
Data used in the following: 2021 Kidney and Kidney Tumor Segmentation Challenge (KiTS 21)
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Pipeline for Training an Al (Supervised Learning)

Now how does the Al learn how to extract anatomy?
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Complexities of Collaborative R&D

case BOBOO =%

e [V P =
Locstatin, | =¥ &) WS NH 0
= e 6 =) R
0 Q [}
Deinsasan 00 O
00 (s}

Guidance

Sounds simple? In practice,

= data collected by doctors, needs to be accessible to technical scientists

anonymization has to be applied to data leaving the hospital
algorithm results or application prototypes have to be shared

= data needs to be reviewed / weeded out by both physicians and Al specialists
= annotations take a lot of time and need to be reviewed by experts

®m data comes in batches, numbers increase over time

= problematic cases excluded at any time, annotations may need corrections, ...
= Al models are trained on different versions of curated data
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PURPOSE / SCOPE

_O ur tOOI kit SpeedS Professional tooling for large, multi-site data collection & curation
up collaborative Data F N A G revlicton () 23
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1 * Viewing * Model training = Clinical evaluation
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= Annotation assessment
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SATORI - A Highly Customizable Annotation Tool

Main frontend visible to clinical users

Basic Features

Import / Export in many formats (DICOM, SEG, NIfTI, ...)

Automatic categorization, tagging and preprocessing

User and group management, private / shared sessions, audit mode
Customizable hangings and layouts

Structured annotations (subject / study / image / structure)

Efficient segmentation and correction of structures

Advanced Features through extensibility

B Smooth transition towards application prototypes

B Deployment options (MEVIS, on site, cluster, cloud, ...)
B Direct connection to Deep Learning
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= Fraunhofer interaciive Lesion Tracking
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Technology Goal 1: In-Situ Correction
Only dynamically learning Al appears really “intelligent”

Long history of application prototypes with
manual correction facilities

= Doctors become frustrated when software
repeats the same mistake again and again

Our highly integrated web-based Al collaboration toolkit
makes these corrections more sustainable

® Corrections enter data pool...
® ...undergo review / curation...
® ...and can be used for training / evaluation.

Thought on Deep Learning

We expect corrections to be particularly valuable!




Technology Goal 2: Federated Learning

Because multi-centric data is key to robust Al & real-world applicability

Toolkit supports on-site deployment

= data does not have to leave the hospital
Trained models may travel, though

= for evaluation / application

= for learning on data from multiple sites

Our toolkit provides interfaces also for models
® goal: supporting real-time communication betw. hospitals

Problem dimensions

= hurdles for data sharing

= firewalled IT (as a consequence)
® training strategies
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Conclusions

Al Collaboration Toolkit

We are building an Al Collaboration Toolkit
with integrated platform components for

® data curation

i - starts.
| DNN/Models | Dashboard

= Alresearch & development =m0
= custom application prototypes (et - (e
Integration enables [ vy | (£ sowam

= dynamically learning Al and
= federated learning

The toolkit is used in ongoing projects, internally and with various partners
= RACOON-SATORI currently deployed to all German UMC (NUM)
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