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 Bosch is one of the world’s leading providers of innovative MEMS sensors and actuator solutions 

tailored for smartphones, tablets, wearable devices and IoT applications. 

 Start of MEMS production in 1995 - over 9.5 billion MEMS sensors produced

 100% in-house from MEMS design to manufacturing
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Combo sensors with embedded intelligence

Integrated sensor hubs BHI260 and BHA260

Smart Hub solutions combine Bosch Sensortec’s…

 16 bit MEMS sensors with an ultra-low power, high 

performance coprocessor

 Best-in-class sensor data fusion software

 Application specific software: 

‒ Orientation and gesture recognition (for VR controllers), 

‒ Activity recognition (for fitness applications), 

‒ Pedestrian dead recognition (for navigation), 

‒ Context awareness

Idealy suited for demanding always-on sensor applications 

without compromising features or performance 

Combo sensor 

with integrated 

sensor hub
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Applications

© Vivalnk

1  Ghaffarzadegan et al.: Occupancy Detection in Commercial and Residential Environments Using Audio Signal (Interspeech 2017)
2 Schmidt et al.: Introducing WESAD, a multimodal dataset for WEarable Stress and Affect Detection (submitted to ICMI 2018)
3 Dürichen et al.: Prediction of electrocardiography features points using seismocardiography data: a machine learning approach (accepted for ISWC 2018)
4 Humanyu et al.: Learning Front-end Filter-bank Parameters using CNNs for Abnormal Heart Sound Detection (EMBC 2018).

1

4

Up-coming („medical“) applications :

 Wearable based affect recognition (e.g. mood and stress recognition2)

 Eldery care (e.g. fall detection)

 Intelligent sensor patches3, 4
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Example: Human Activity Recognition (HAR) for Elderly

with walker

w/o support

with crutch

Human activity recognition for 

people (elderly) who rely on 

support is still a challenging 

problem

 Example of 3D acceleration data 

acquired at wrist position

Münzner et al.: CNN-based sensor fusion techniques for multimodal human activity recognition (2017)



 State of the Art algorithms use „classical“ machine learning aproaches including:
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Example: Human Activity Recognition (HAR)

Machine 

Learning

Classifier

Feature 

Extraction

Input / Raw Data

Preprocessing

(Filtering)

Sliding Window Approach
Activity



 State of the Art algorithms use „classical“ machine learning aproaches including:
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Example: Human Activity Recognition (HAR)

Machine 

Learning

Classifier

Feature 

Extraction

Input / Raw Data

Preprocessing

(Filtering)

*Janidarmian et al.: A Comprehensive Analysis of Wearable Acceleration Sensors in Human Activity Recognition (2017)

Sliding Window Approach
Activity

Extraction of 

176 features per 

segment
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And what about Deep Learning?
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And what about Deep Learning?

 First promising end-to-end learning results published for HAR since 2011:

 Plötz et al.1 showed that meaningful features can be learned for HAR using Random Boltzmann Machines

1  Plötz et al.: Feature learning for activity recognition in ubiquitous computing (2011)
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And what about Deep Learning?

 First promising end-to-end learning results published for HAR since 2011:

 Plötz et al.1 showed that meaningful features can be learned for HAR using Random Boltzmann Machines

 Yang et al.2 presented first deep CNN network for HAR

1  Plötz et al.: Feature learning for activity recognition in ubiquitous computing (2011)
2 Yang et al.: Deep convolutional neural networks on multichannel time series for human activity recognition (2015)
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And what about Deep Learning?

 First promising end-to-end learning results published for HAR since 2011:

 Plötz et al.1 showed that meaningful features can be learned for HAR using Random Boltzmann Machines

 Yang et al.2 presented first deep CNN network for HAR

 Münzner et al.3 detailed investigation multimodal sensor fusion for CNN networks

1  Plötz et al.: Feature learning for activity recognition in ubiquitous computing (2011)
2 Yang et al.: Deep convolutional neural networks on multichannel time series for human activity recognition (2015)
3 Münzner et al.: CNN-based sensor fusion techniques for multimodal human activity recognition (2017)
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And what about Deep Learning?

 First promising end-to-end learning results published for HAR since 2011:

 Plötz et al.1 showed that meaningful features can be learned for HAR using Random Boltzmann Machines

 Yang et al.2 presented first deep convolutional neural networks (CNN) for HAR

 Münzner et al.3 detailed investigation multimodal sensor fusion for CNN networks

 Ordóñez et al.4 used of a deep CNN and RNN which outperformed classical methods by 4% on average

1  Plötz et al.: Feature learning for activity recognition in ubiquitous computing (2011)
2 Yang et al.: Deep convolutional neural networks on multichannel time series for human activity recognition (2015)
3 Münzner et al.: CNN-based sensor fusion techniques for multimodal human activity recognition (2017)
4 Ordóñez et al.: Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition (2016)
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Challenges – Deep Learning

1

2

Lack of large datasets – ImageNet for HAR is missing

Very resource intensive due to high number of computations

„DL approaches are far too complex to be executed 

on wearables like a smart watch!“

 Only small public datasets available (starting to change*)

 Labelling of data is cumbersome and time consuming 

 Cannot be solved easily by e.g. using crowd sourcing

* Doerty et al.: Large scale population assessment of physical activity using wrist worn accelerometers: The UK Biobank Study (2017)



 “Transfer Learning will be the next driver of ML 

success” – Andrews Ng, NIPS (2016)

 Ordóñez Morales et al.1 showed that transfer

learning is possible between users, application 

domains, sensor modalities and sensor locations 
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Challenges – Deep Learning

 DL approaches offer new possibilities to merge different datasets (e.g. different sensor positions) and to 

integrate unlabeled data

1 Lack of large datasets – ImageNet for HAR is missing 

1 Ordóñez Morales et al.: Deep Convolutional Feature Transfer Across Mobile Activity Recognition Domains, Sensor Modalities and Locations (2016)
2 Rasmus et al.: Semi-supervised learning with ladder networks (2015)

Transfer Learning Semi-Supervised Learning

Task A
Task B

Transfer

 End-to-end learning offers

possibility to combine labeled 

and unlabeled data in one 

optimization function.

 Example of semi-supervised 

ladder network presented by 

Rasmus et al.2 (NIPS, 2016).

General Adversarial Networks…?
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Challenges – Deep Learning 

2 Resource intensity

Cry for better hardware …

 Apple A11 Bionic chip

 HUAWEI Kirin 970 with neural processing unit

 ARM – Project Trillium

 …
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Challenges – Deep Learning 

2 Resource intensity

Cry for better hardware …

Algorithmic & architecture adaptations:
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Challenges – Deep Learning 

2 Resource intensity

Cry for better hardware …

 Algorithmic & architecture adaptations:

 “Simple architectural solutions”

‒ Model architecture selection based on the architecture 

the platform can afford

‒ Replace feed-forward layers with single shallow 

classifier, 

…
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Challenges – Deep Learning 

2 Resource intensity

Cry for better hardware …

 Algorithmic & architecture adaptations:

 “Simple architectural solutions”

 Node pruning

Han S.: “Learning both Weights and Connections for Efficient Neural Networks” (2015)
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Challenges – Deep Learning 

2 Resource intensity

Cry for better hardware …

 Algorithmic & architecture adaptations:

 “Simple architectural solutions”

 Node pruning

 Quantization

Han S.: “Deep Compression: Compressing Deep Neural Networks with pruning, trained

quantization and huffman coding” (2015)



Machine Learning for Wearable Computing  

Dr. Robert Dürichen (CR/AEU2) | 2018-07-04

© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.
20

Challenges – Deep Learning 

2 Resource intensity

Cry for better hardware …

 Algorithmic & architecture adaptations:

 “Simple architectural solutions”

 Node pruning

 Quantization

 Low rank approximations and

sparse coding of weight matrices

Plötz et al.: „Deep Learning for UBICOMP“, tutorial @ISWC2017
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Challenges – Deep Learning 

2 Resource intensity

Cry for better hardware …

 Algorithmic & architecture adaptations:

 “Simple architectural solutions”

 Node pruning

 Quantization

 Low rank approximations and

sparse coding of weight matrices

 Low precision and binary networks

M. Rastegari: „XNOR-Net: ImageNet Classification Using Binary Convolutional Neural

Networks“ (2015)
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Challenges – Deep Learning 

2 Resource intensity

 First results running a DL model directly on a smart watch by 

Bhattacharya & Lane*

 Implemented on Snapdragon 400 

(used in LG G smart watch R)

 Investigated tasks: 

gesture, activity tracking and indoor/outdoor 

 Model with 3 hidden layer outperforms 

state of the art algorithms

 Runtime of 20 – 48h possible 

(400mAh battery)

*Bhattacharya and Lane: From Smart to Deep: Robust Activity Recognition

on Smartwatches using Deep Learning (2016)
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New Chances with Deep Learning

 Bringing standard machine learning algorithms on an embedded device

is cumbersome and time consuming (due to manual feature enginerring)

Machine 

Learning

Classifier

Feature 

Extraction

Input / Raw Data

Preprocessing

(Filtering)

Sliding Window Approach
Activity
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New Chances with Deep Learning

 Bringing standard machine learning algorithms on an embedded device

is cumbersome and time consuming (due to manual feature engineering)

 Fast success of deep learning approaches due to large and open 

frameworks

Development of special library for fast transfer for trained DL models onto 

target platform:

 Qualcomm Snapdragon Neural Processing Engine SDK

 ARM NN SDK

 Faster deployment due to end-to-end learning with standardized building blocks and well 

supported frameworks

Chance



 State of the art for edge computing is still “classical” machine learning with manual feature 

engineering and sliding window approach

 Very active research field - increasing community of industrial and academic partners (new 

hardware, continuous algorithm improvements…)

Chance for faster deployment of DL models on embedded targets due to standardized building 

blocks (CNNs, RNNs, MLPs) and well supported frameworks
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Conclusions

“Deep learning on constrained devices, such as phones, watches, and even 

embedded sensors, is already well on its way to becoming mainstream. “

Nicolas D. Lane

ML algorithms for wearables will change quickly
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A Chance for Deep Learning!

Questions?


